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Implicit, Time-Dependent Variable Grid Finite 
Difference Methods for the Approximation 

of a Linear Waterflood 

By Jim Douglas, Jr. and Mary Fanett Wheeler 

Abstract. An implicit, time-dependent variable grid finite difference method based on the 
addition of an artificial diffusivity is introduced and analyzed for approximating the solution 
of a scalar conservation law in a single space variable. No relation between the grids at 
successive time steps is required for convergence. Two adaptive grid selection procedures are 
shown to be covered by the analysis. Analogous results are also established for an implicit 
upwinding procedure. 

1. Introduction. The two-phase, incompressible, immiscible flow of water and oil 
in a homogeneous, linear (i.e., single space variable) porous medium can be 
described by the solution of the scalar conservation law 

as +af(s) 0 (1.1) at + a at ax 
provided that capillary effects are ignored. This equation is derived from Darcy's 
law and the conservation of mass as follows. The subscripts "o" and "w" refer to oil 
and water, respectively. The symbols 4, k, pi, p, q, p, and s represent porosity, 
permeability, viscosity, density, velocity, pressure and saturation, respectively, with 4 
being a rock property (constant by the assumption of homogeneity) and ko = 
k(x)kro(so) being the product of the gross permeability k(x), again a constant, and 
the relative permeability kro(so) of the oil phase. The reservoir can be inclined; it 
will be assumed to have height Z(x) linear in x; g is a gravitational constant. Then 
Darcy's law states that 

(1.2) qj = !?( Po+P0gz') qw > ('? + Pwgz') 

Conservation of mass for the incompressible fluids requires that 

(1.3) ats - _ax -t aqx 

If the medium is completely saturated by the water and oil, then so + sw = 1; set 
s = sw = 1-so. It then follows that qo + qw is independent of x; for simplicity 
assume that the total flow rate is independent of time as well: 

(1.4) qo + qw = Q, a constant. 
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Manipulation of (1.2)-(1.4) leads to the equation 

(1.5) 
f as a [ Q , - P0)gZ' ko =0, 

which can be put into the form (1.1) by first changing the time variable by t Qt/l 
and then setting 

(1.6) f(S) k kw$2Z/ [I (p - p0)gZ'ko1 
(1.6) ~~~~kw/tw + kolAo [Q A0 
To specify a particular problem let the reservoir be the line R and assume the 

initial condition 

(1.7) s(x,0) =s0(x), x ER, 

where for physical relevance 0 ? s0(x) ? 1. The function f(s) is such that f(O) = 

f'(0) = f'(l) = 0 and f(l) = 1; since s0(x) lies in the interval [0, 1], it follows that 
s(x, t) is so bounded for all x and t. It is expected that the physical solution will 
exhibit shocks, and the numerical procedure, if it is to be reliable, must be shown to 
give convergence to the correct discontinuous solution. 

An implicit finite difference method based on the regularization of (1.1) by the 
addition of an artificial diffusivity depending on the function f(s) and the time-de- 
pendent, variable spacing grid (a " vanishing viscosity" scheme) will be described 
and analyzed. The analysis follows the general outline presented by A. Y. Le Roux 
[5]; it also generalizes the analysis given by one of the authors [1] for the uniform, 
fixed grid case and presents the proofs for the results described by the other author 
[6] in her talk at a conference in Rio de Janeiro. The analysis is also extended to 
cover an implicit upwinding scheme. 

Our principal theorem demonstrates that essentially any reasonable self-adaptive 
mesh selection process leads to convergence as the grid is refined. In particular, the 
method proposed by the authors and their colleagues [2] does give demonstrably 
convergent approximation for the examples treated in that paper. 

2. The Finite Difference Procedure. Let AXt > 0 and set t0 = nl\t. (It is an easy 
generalization to consider a variable time step; however, for notational convenience, 
we shall treat a constant time step.) Let 3n = {... ,Xn, xn, Xn,. . . }, where xn -Xn 
= hn > 0, and Xn+? co as i x , be a possibly time-dependent grid. A centered 
finite difference analogue of (1.1) that conserves mass can be derived by using 
standard differencing for f(s)x and for the artificial diffusivity term and by ap- 
proximating st as follows. Denote the finite difference approximation at (xn, tn) by 
win. Let Xnl/2 =2(Xi + X<n) and extend the knot values {win-'} to a function 
wn-I (x) by 

(2.1) wn l(x) = x1??1/2 i x 1/2 

Set 

(2.2) W h + h fx n /2wnx(x) dx; 

i.e., i~jn is the average value of w'-l over the interval [Xl1/2, Xl+/2]. For 
n - 1 = 0 replace wo(x) by the initial values s0(x) in the evaluation of wi?. 
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Our difference equation is given by 

win - wn f(W- n 
(2.3) 

i 
+ fWi+, h7) 

--J /\~t h" + hn+ 

gn (Wn-Wi)- -gnU1 gl+ 1/2(W+IW) g--I1/2( _1- nI) 
hn + htin+I 

Note that the artificial diffusivity has been scaled locally to include the spatial 
increments as a factor; if Gin-l/2 n 

hingn /2, then the added term is a standard 
differencing for -(G,sS )x. The requirements for the selection of g1n+ I/2 will be given 
below, but essentially gin/2 will approximate f'(s) for s between win and wi+ . 

3. Convergence Analysis. Our object is to establish the convergence of the 
approximate solution to the physical solution [3], [4] of (1.1) in L??(O, T; L1(R)) as 

(3.1) At + maxhn -0. 
1, n 

Assume that 

(3.2) (a) s0 E L1(R) n BV(R), 

(b) supp(s0) C C R. 

Also, assume that f is Lipschitz continuous on R with Lipschitz constant F. 
Note that 

( ) ~~~~~f(Win 1)- f(Win) 
- 

Fn X(w.lWin), (3.3) f(ii)-(w+ 11/2(Wi?1 I 

where 

(3-4) |Fi+/ 
n 

<sp f(u )-_ f(v)|F 

and Fn+1/2 belongs to the subdifferential f'(u) for some value u E [win A wi+, 
w.n V w-n J. Assume that 

(3.5) g[n sf/2 uP 
f 

S 
f ) 

w: n A w ?+ 
a , w 

p n V w n1{ 

zFin+ , -00 <ci < x, n21 

While (3.5) is implicit, it does not raise a practical difficulty in actual petroleum 
engineering applications, for f' is relatively smooth. 

Denote the 1f(Sn)-norm by I * and the BV(Sn)-norm by 

Var(z) z= - 
Zi-i-I t '- i |hin hn 

LEMMA 3.1. w' lo A| wn I l . * * * 11 (R) 

Proof. Clearly, I w? lo 11s0 II L? so that it is necessary only to show that 
I w n I w" I W oo The difference equation (2.3) can be rewritten in the form 

win -wn- I 

(3.6) Wi - Wi_- 
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where 

(a) 6n = (hn + h n -I(ggn 
n 

- 

(b) 4in (hn + h7n )-1(gn /2 ?Fn 

The constraint (3.5) implies that Ofin and ,in are nonnegative, and the usual maximum 
principle argument shows that 

(3.8) inf wjy j w/1 sup). 
J I 

Thus, it follows that 

| wn 100 ?j wn loo 

as was to be proved. 
An obvious corollary of (3.8) is that, if 0 so(x) < 1, then 0 ? win < 1 for all i 

and n. 

LEMMA 3.2. Var(wn) < Var(wn-1) < . Var(so). 

Proof. Set zn wn+ I-wn and iFn- 1 = win-7 1 - wn 1.Then, 

n -n-I z 
t I- z.i i-1 l\t = 6 

- - 

z f Pz 
/ 
+I?Zin 

? 
4,nZUn I 

or 

( ty+ Hin + pin)1 Z +onnz + 4inZ n-,. 

Thus, since Oin 0 and 4,/i 0, 

I [ ( i nIi+ )At] I Zn | yin I| + ( in + An )At Zn 
i~~ ~~~~ i 

or 

Var(wn) = jz7< j? in -|I 
i i 

Now, let Ij= [Xj>/2, xj7+/21, and assume that aj and f3j are points in Ijsuch that 

nIa, = mn-I(j) = n-IX) 

Ii Ii 

where wn-1 is considered to be the multivalued function resulting from filling in its 
jumps. Let {Yk} be the ordered union of {laj} and {/Bj}. Then, 

2 zi~ | I zmax{|wn 1(aj+?) - wn-(I( )|, wn-l(p?) - wn-I (aj)} 
i j 

| wn 1(Yk+lI) 
- Wn 1(Yk) I < Var( w 1). 

k 

Thus, Var( Wn) < Var( Wn- 1) for n > 1. Clearly, Var(w?) < Var(so), and the lemma 
is proved. 

An immediate consequence of Lemma 3.2 is that the 11(R)-norm of the first 
x-difference (over 6n) of the approximate solution wn satisfies the inequality 

(3.9) Kwni, 
_ 

| w I ?hkn x w 1Ln I <- Var(so) 
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Another sum is also useful as an alternate 11(R)-norm. Let 

hn + h.n 

LEMMA 3.3. Let a,win = (wi'- ijn -')/A t, and assume that jFJ 7/2j? gI/ 2l/2 ? F. 
Then, 

h n+ hn~ 
(3.10) AwnI = 2 l2Winj 

i + < 2Flaxwni In < 2FVar(so). 

Proof. A slight rearrangement of (3.6) using (3.7) leads to 

tn + n )a Wn - (gn -Fn n _ n + Fn n (hi + hi+l ?)1Wi2 (gl122 - Zi Fgi-)1/2 iz1/2)Zn-- 

so 

2(hi + h7n?)Iatwin <F(IzZn I +jzZn I), 

from which (3.10) follows. 

LEMMA 3.4. W SO Ll(R) + 2Ftn Var(so). 

Proof. Since 

nh +nh' fXi+1/2j w 1(x) I dx, 

( 
)|w |2 g| W-l d =2 

WnlhJ + hi, n. 
hn + hn hn-I + h7n44 

(3.11) 2In dx?j 2 
i J 

Thus, 

hn7+hn? hn7+hn~ 
(3.12) tw-nI 2 2 + Ft(E (| zi +Iz -i) 

1 ~ ~ V 1 + n1 

hn-1 +I ?2Iw1< j 2 + 2FAtVar(wn), 

from which the lemma follows easily. 
Consider now a family of approximate solutions. Let Tk ={tk; 3k, n 0, 1,...), 

where Sn = {Xik} and let Wlk denote the solution of (2.3) related to Tk. Assume that 

(3.13) maxhnk < KAtk -O 
1, fl 

as k -->oo. (This constraint is rather unimportant, as it is the ability to use small h 
locally that is of interest; also, (3.13) is not required if 3n never depends on n.) 
Associate a function wk(x, t) with the knot values Wink by first extending {Wink, 
0 + 1, . . . } be piecewise-linear interpolation in x to wik(x) and then {v'kn, n 0 O, 1, . . } 
by piecewise-linear interpolation in t. Lemmas 3.1 - 3.4 have the following interpre- 
tations in terms of Wk. 
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LEMMA 3.5. Under the hypothesis (3.13), the function wk(x, t) satisfies the following 
estimates: 

(a) IWk 11 L(RX[O,T]) S 11 L'(R) 

(b) IIWk(t)I Ll(R) SO l (R) + 2Ft Var(sO), 

(3.14) (c) aWk ?Var(s0), 
aX L'(O, T; L'(R)) 

(d) aWk < (2F + 7K)Var(sO). at L'(O, T; L'(R)) 

Proof. The inequalities (3.14a) and (3.14c) are immediate; (3.14b) results from 
noting the trivial inequality 

II Wk ILI(R) ? 1 WkIIL(R). 

The estimate for awk/at requires argument and is the source of the restriction 
(3.13). Let x G [x n_l/2, x nl/21. With w(x, t) wk(x t), and tn-I < t < tn 

nWi(X) - Wn ((X) 

at At l\t xn l\t 
First, (3.10) implies that 

IWn n-W n -1 h n + h n 
At 2____ 7h~ < 2FVar(SO). 

Next, by (3.13) and (3.14c), 

fn xa In hn n___V 

z lxon ' 

/dXIn ax 
dx 

2 I ax 
dx < KVar(sO). 

Essentially two cases arise in the treatment of the third term. If there exists 
Gn [x1'l/2 Xil+1/21 such that jivjl(n7fl) =Wn-l then 

in-I - -nll(XI xa WI d-I 

Iyix ax 

and 

lXi+ 1/21 w W--w d(x < hi . + hi+1 lXin+12 awl- d, 
ni/ At dx 2At n_ ax 

< KVar[Xn ,,X,n+/2( w ) 

If no such -jn exists, assume that wn-1(x) < W-in` on [Xn Xnl/2 xl/21 Iin With 
w 1(x) =wj1 on Ijn-l as before, we consider first the case that 1 assumes at 
least two values on Iin. Then, w must assume a value between the two some place 
on Iin; hence, there existsYin c Iin such that 

w.n - Wn(yin) Varin(wn1). 
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The argument above then leads to the inequality 

j | < t ( ) |dx < K(Var1n(wn1) + Vari n(w1)) 

Finally, we are left with the case for which wn- 1(x) = i-in- l on Iin. Let J indicate the 
union of consecutive intervals In . . ,II, where i1 ? i ? i2, on which wn-'(x) 
remains constant and equal to Fin- l and on which wn- I(x) < wi'n- 1. If J* =i7nl U 
J U Iin 1then it follows that 

wI w n Var .(Wn-1) 

and 

l-1 - 
-A(t 

) dx < At J(Varj.(w- ) + Varj*( w I)). 

The constancy of w'- on J and the nonexistence of a point at which w l equals 
jij-fI implies that j J I < KAt. Hence 

At l l- ()dx < K(Varj.( w r ) + w 

The variation of wn- I or wn- I over some interval Iin occurs at most three times as a 
result of the decomposition into cases above. Thus, 

(3.15) 
A 

dx 

< (2F+ K)Var(so) + 3K(Var(wn- ) + Var(Wn- I 

< (2F + 7K)Var(so). 

Note that, if 3?n were constant, iw1n- = win and no perturbation terms would 

arise, so that (3.13).would be unnecessary. 
Standard functional analysis implies that a subsequence, say {Wk }, of {Wk} 

converges in L'(O, T; L1(R)) to a function w E L'(O, T; L1(R)). The first objective is 
to show that w is a weak solution of (1.1), (1.7); i.e., if p E CO (R X [0, T)), then 

(3.16) fTf (w99 ? f(w)p) dx dt+ ? s0(x)(x, 0) dx =0. 

Afterwards, it will be shown that w is the unique weak solution satisfying the 
Kruzkov criterion for the physically relevant solution; hence, the entire sequence 
{Wk} will converge to the desired weak solution. 

It is convenient tu dcfine- an alternate, piecewise-constant extension of win. Let 

,k [xn Xn/2, x1+?/2k) X [tn, tnk ). Note that, if wk - w in 
L?(O, T; L1(R)), then so does {ik }. Now, let p e CO&(R X [0, T)) and multiply Eq. 
(2.3) for win = Wink by 

7n(hn + hn?)zAt/2 = ,n k h ,kn + hnk )Atkm/2 
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and add on all i and n 2 1. The individual terms can be treated as follows. First, by 
(3.10), 

n - inl-n w1 -Wi n i h7+h 1 
(3.17) Ai t " 2 

= fxi+ 1/2 w(x )-W, 
q(x, tn) dX + O(h Var(so)), 

Xi-1/2 

where 

(3.18) h = sup hi. 
i , n 

Recall that 

(3.19) fX'i?I/2(n-l(X) - W-n-1) dx 0, 
i-/2 

and set ipin equal to the average value of ((x, t0) over [xUn /2, x,4 1/21. Then, 

(3.20) fx+?'2iiY-1T( X ) dx 
n 
Xi- 1/2 

1xn /2[ n- l(X)q9(X tn ) + (i-n- I n- I ( )(qg(X, tn )- )] n 

Xn 

=Xji+ 1/2wn-I(X)q)(X, tn) dX + 0 ((hin + hn 1)2 Var IX 1- I/ 2 Xn+ I/ 2]wn-I) 
Xi-1/2 

X~~ 1/2 ar0) dx, +X ((n 
since I wn- l-wn1(x ) j ? Var[XfI/2 

X+l1/2](Wn-) on the subinterval. Thus, (3.17) 
can be changed to read 

iI j~ hn + hn? ~- 
(3.21) n At1 + 

2wn dx + O(hVar(so)), 

using the restriction (3.13). Add on time: 

(3.22) A- t h +(hP A 
n=l i 

- At w _ w qcndx + O(h Var(so)) 

n=1 At~~~~A 
= -w ?qp1dx - , AtWnP At dx + 0(h Var(so)) 

- fsO(x)g(x,0) dx f w Tfv dx dt 

+O((At + h)(Var(sO) + ISO IIL'(R))) 

fsO(x)(x,0) dx -] w aT dxdt 

as km x , where w is the limit of {w k }. 
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Next, 

(3~ ~ 0 
23 1) - 2i hn + hn nP \ (3.23) 

ni i1A 

I- 2 f(wi hn + hn '2i t 
n=1 i i i+~~~1 1 i? 

~~~ -~~0 n-- wU1) hn + hn 

(3.24) | E. h7 + h,+ h + h 2 | 

n1 i ~ ~~ =1 i?1i+ 

|2 n- . L ~-1l/2 hn h.tl( ") 

T S 

- O(h Var(s0)), 

by Lemma 3.2. The combination of (3.22), (3.23), and (3.24) leads to the conclusion 
that the limit function w satisfies (3.16); consequently, w is a weak solution of the 
initial value problem (1.1), (1.7). 

It remains to show that the limit function w is unique, that the entire sequence 
{Wk} converges to w in L??(O, T; L1(R)), and that it is the physically relevant weak 
solution. This will be done by showing that w satisfies the two conditions of Kruzkov 
[3] that guarantee that it is the physically relevant weak solution. The simpler of the 
two conditions is to prove that 

(3.25) lim 4Iw(, t)- s011 n(R) =0t 

tMO 

where the exceptional set E must have measure zero. The difference w(x, t)- so(x) 
can be represented in the form 

(3.26) w(x, t) -s0(x) (w -Wkm)(X, t) ? j at (x, Tr) d'r 

?(w( Wx,O) - 5(X )) - 

The third term tends to zero in L1(R) by the construction of Wk(x, 0). The integral is 
0(t) in L1(R), by Lemma 3.5. The first term tends to zero in Le(R) for almost all t, 
by Fubini. Consequently, (3.25) holds. 

The more difficult condition to establish is that, for 0 h E Cth(R X (0, T)) and 
k E R, 

(3.27) jTJ{1 w-k |p, +sgn(w-k)[ f(w) -f(k)]pGX1dx dt?>O. 

o~~~~~i 

The lemma below and the argument given in (3.17)-(3.24) above will be used to 
demonstrate (3.27). 
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LEMMA 3.6. Let k e R. Then, 

(3.28) win -k I-I i-n-1 
- 

kI 
At 

sgn(winl -k){ f(w'n+1) -f(k)} - sgn(wLn - k){ f(w/n1)-f(k)} 
hn + h7n+ 

gi+ 1 /2( w+ I- I- .nk1 -g 1/2(0 Win-II . -k) 

hn + h n+ 

Proof. Set ,n = At(hn + hn I)-'. Add and subtract k in the time-difference term 
and f(k) in the transport term in (2.3), and then multiply by sgn(w1n - k): 

(3.29) win- k =sgn(win- k) -(w-Vn- 1- k) 

+?g [sgn(win - k){f(win 1) -f(k)} 

-sgn(win - k) { f(wn+ 1) -f(k)} 

+gn 2{Win+ l-k I-In W- k} 

-g- 1/2{ I win -k I|-|I win I -k }+ Rn] 

where, iff(wjn) - f(k) = Gjn(wn- k), 

(3.30) Rn = [sgn(wn- k) - sgn(win- I- k)] { g n/2 + G- 
n 

(wln I k) 

+ [sgn(wn - k) - sgn(w%n+ I- k)] { gi+ 1/2 -Gi+ I - k). 

The first term on the right-hand side of (3.30) vanishes unless k falls between win-, 
and wn. If k does fall there, (3.5) implies that gn 1/2 + GU1 n 0, and the product is 
nonpositive. Similarly, the other term is also nonpositive. Hence, 

(3.31) Rn 0, 

and (3.28) is valid. 
Let p 2 0, p G COc(R X (0, T)). Multiply (3.28) by ,n(hn + h7?1)At/2 and sum 

over i and n, n 2 1. The analogues of (3.23) and (3.24) are 

(2 
sgn(Win 

- ) {f(win+ 1) )-f(k) - sgn(w,_ k) { f(w'n -f(k)} 
hn + h n 

n1 i i?1 

hn ? h n 
2 

A 

00 n nhn hn 

= - 2, fi sgn(wn - k){ f(win) -f(k)} hP? - P i 2 I?At 
n| 1 i? 1 2 add 

-*-Tfsgn(w - k){ff(w) - f(k)} ~ dx dt 
0~~~~~~~a 
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and 

00 gn 
Wi z g.+/{w -k -win -k )gn l/{W-k-win-, I-k} 

(3.33) 
i 

1h +I?hn7-1/2 
i 

h + h n 
2 

1 _gn _w___k_wn_I__k__9_____n_2_ A 
2 i- 1/2. h n hn (hi 

n=1 i 1 

= O(h Var(so)). 

Since p a 0 and fI i-.1- k I is a constant, the orthogonality to constants expressed 
in (3.19) and used in (3.20) remains applicable. Consequently, 

EE win - k t-tW.n- k I h n + h n 

At 'Phi ?7?i2 
n=l i 

=-fI so-k I 
t 

)(x, t1 ) dx- 
T 

1Tf_k I 
aI 

P dx dt 
(3.34) atIO 

~~ J JI I~ 

+O((At + h)(IIsoII L'(R) + Var(sO))) 

fTf,I w-k Idx dt, 

since p(x, 0) = 0. The inequality (3.27) follows from (3.28), (3.32), (3.33), and (3.34), 
and the weak solution is the unique weak solution satisfying the entropy condition 
[3], [4]; i.e., the physically relevant solution. Clearly, this also establishes the 
convergence of the entire sequence of approximate solutions. The following theorem 
has been proved. 

THEOREM. Let the mesh Sn at time tn be subject to the constraints (3.13), but 
otherwise arbitrary. Let the artificial, weighted diffusivity gi 1/2k satisfy (3.5) and be 
bounded above. If wink is the solution of (2.3) corresponding to {LAtk, 8 n} and if Wk and 
Wk are the piecewise-bilinear and piecewise-constant extensions of Wink, then {Wk} and 
{Wk} converge in L?(0, T; L1(R)) to the unique weak solution of (1.1), (1.7) satisfying 
the entropy condition. 

4. Adaptivity Using the Inverse Function. Consider the waterflood problem given 
by (1.1) with the initial condition 

(4.1) so(x){ (j x>0. 

It can be assumed, [1], that 0 A f(s) < 1, f(O) = f'(O) = f'(1) = 0, and f(l) = 1. 
Moreover, f' can be taken nonnegative and it is bounded. Since the solution is of 
interest only for x a 0, the analysis of the last section can be applied to difference 
methods of the form (2.3) to see that approximate solutions converge on R+ X [0, T] 
by making a virtual change in so for x sufficiently negative; in fact, the boundary 
condition s(0, t) = 1 can be substituted. 
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It can be seen that the entropy condition implies that the relevant solution of 
(1.1), (4.1) consists of a single shock of height s*, where 

(4.2) S*f'(s*) = f(S*), 
moving at the uniform speed f'(s*), a rarefaction between x = 0 and x = tf'(s*), 
and the constant zero for x > tf'(s*). If a difference method of the form (2.3) subject 
to the restraint (3.5) on the artificial diffusivity and the restraint 

(4.3) K At < hn ? K2At 

is applied to (1.1), (4.1), then convergence in L?(O, T; L1(R)) is assured as At tends 
to zero. A proper interpretation of the difference equation at xn is given in a 

mass-conserving form by taking 

won - won f(w-n) -f(won) g/2(w wn ) = 2 
(4.4) ? * I\ ~ ~~t hln hln hln 

The selection of the grid An can be made in the following fashion [2]. First, select 
81 = = 0, x, . . ), with xl = iKI At for small i and set wil = 0 for the remaining 

i. Now, it follows from the maximum principle argument used in the proof of 
Lemma 3.1 that, if wjn- 1 is decreasing, win is also decreasing. Thus, the piecewise-lin- 
ear interpolant wi of win is decreasing, and its inverse function exists. Moreover, it can 
be seen easily that won < 1. Select the grid 3nf+I tentatively as follows. Let 

2_ 2 
(4.5) N~ 

= 
2A0 ( . ) ~~~~~~n (KI + K2)1\t ? ' 

and let 

(4.6) w(x+)=I- 0wO,i= ..............,Nn-1 

Set 

(4.7) XN = max(1n 1 + K At, ytn?1f (s*)), 

where y is bigger than one but less than, say, 1.25. If necessary, modify {tV+ } to 
satisfy (4.3); this can be done by shifting the points or by adding or deleting points. 
Call the resulting sequence 3n?= {XI=X l n set n?1 ,X ). Then set WM - 0 and solve 
for win+ Si= 0~ . .. Mn+l l- 1. 

The algorithm above is essentially the one that was used in [2]. Experimentally, it 
was found that maintaining the constraint (4.3) placed a sufficiently fine grid around 
and immediately in front of the location of the approximate shock that it was better 
not to adjust the grid after each time step, but instead every few steps. In either case 
convergence takes place. See [2] for results of a number of experiments. 

5. Adaptivity Using the Characteristics. Consider the same example as in the last 
section or the general initial value problem. The characteristic through the point 
(xn, tn) has slope (speed) f'(win). Hence, the value win would be transported to the 
point 

(5.1) ' x+ n + f'(win) At 

at time t0?1, except for shock behavior. Accept some value, say xo = + , as 
estimated by (5.1). First, reorder to obtain a monotone sequence, then modify this 
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sequence to satisfy (4.3), and call the resulting sequence S"'. If the example of the 
last section is treated, cut the sequence off when x7+1 exceeds yf'(s*)tn?+. Conver- 
gence follows as before. 

6. Implicit Upwinding. Return to the example of Section 4. If we set 

(6.1) g+1/2 i+1/2 

in (2.3) when hin h, then (2.3) reduces to 

(6.2) w+ _) = O+ 
At h 

the standard upwinding scheme, when f' 0 0. The choice (6.1) does not, in general, 
satisfy (3.5), and the convergence analysis does not automatically apply. The 
condition (6.1) does suffice for the maximum principle, and the solution win remains 
decreasing in x. Thus, in order that the proof given in Section 3 stand, it is sufficient 
to show that the term g n -G/2 - nG1 arising in (3.30) be nonnegative. If win > k > 

w+ I then 

(6.3) gn n 
- = (win- w 1(k - win+I 

X [(k - w+I)f(wi) -(wi - w+1)f(k) 

+ (win -k)f(wl+ )] 

which is nonnegative for all decreasing triples (win, k, win+ l) if and only if f " > 0 on 
[0, 1]. This condition is never satisfied for the waterflooding problem; however, a 
minor modification in both the method and the proof allow recapturing both the 
variable grid and the convergence. 

Assume that f is nondecreasing and Lipschitz continuous. Change the definition of 
the piecewise-constant function wn to be 

(6.4) wn(x) =Win, xn_ < x < xi n 

Then, set 
-n -~~~~~ 

(6.5) -n 
xi w n-I(x) dx. 

Then, the implicit upwinding difference procedure is given by 

Win - W.- f(Wn - fIWin (6.6) win-win l + f(Wi )-f(_ __1) = O. (6.6) 
~~~ ~~At 

? 
h n 

The analogues of Lemmas 3.1-3.5 are easily proved by essentially the same 
arguments, again assuming (3.13) to obtain the results corresponding to Lemma 3.5. 
In particular, it follows that 

(a) Iw n 
IISOIIL?L(R), 

(b) Var(wn) < Var(so), 

(6.7) (c) - hn - FVar(s0) 

(c) At I u1Or 
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Again, it follows that subsequences of the corresponding sequences {Wk) and {Wk) 

of piecewise-bilinear and -constant interpolants of {Wink} converge in L?(0, T; L1(R)) 
to a weak solution w. The critical step in demonstrating that w is the physically 
relevant weak solution is the finding of the analogue of (3.28). Here, it follows from 
the relation (iln = At/hn) 

(6.8) Win-k I= sgn(Win- k) - (iW-in--k) 

+in[sgn(win - k){ f(wn) 1)-f(k)) 

-sgn(w1i - k){f(win) -f(k)) + Rn] 
where 

(6.9) Ri= {sgn(in-k -sgn(wLn I-k) {f(win I -1f(k) ) < O, 

that 

(6.10) wnkI - Ik n- 
-kj 

At 

+ sgn(win - k){f(win) -f(k)- sgn(wn I){f(wLn I- k) -f(k)) ?0. 
hin ?~~~~~~~~~~~~~~~~~~~~~~~ 

Multiplying (6.10) by pnh7inAt and summing as before leads to seeing that w satisfies 
(3.27); thus, again convergence is assured in L?(0, T; L1(R)) for time-dependent, 
variable grids subject only to the minor restriction (3.13). 

The method of selecting Sn based on using the characteristics in the forward 
direction in time can be applied for the implicit upwinding scheme for either the 
initial value problem or for the example given by (1.1), (4.1). Note that multiplica- 
tion of (6.6) by hin and summing on i 2 1 shows that 

00 0 

(6.11) win h n= 00n(X) dX= 0n-I()d+ wn)lt. 
00 (x)dx=f 

d + (W 

i=l 0 

Thus, the desired material balance is obtained if the boundary value is set, 

(6.12) Won=l 
- n21 

along with the choice w? = 0, i > 1, which is consistent with (6.5). It again follows 
that win decreases in x, so that the inverse function procedure for choosing &n can be 
used. 

Finally, note that the imposition of (6.12) has the consequence that the procedure 
is simple algebraically. If Wn-l, > 1, and wkn, k = 0,. . . ,i -1, are known, then Win 
is the unique root of the equation 

(6.13) win + Mif(win) Yin = inI + An7f(Win ) 

The nonlinear equation is particularly easy to solve iteratively when an is picked by 
means of characteristics, since win and win-[ are nearly equal unless Xn had to be 
moved from 'in. 

Department of Mathematics 
University of Chicago 
Chicago, Illinois 60637 

Department of Mathematical Sciences 
Rice University 
Houston, Texas 77001 



VARIABLE GRID FINITE DIFFERENCE METHODS 121 

1. J. DOUGLAS, JR., "Simulation of a linear waterflood," Free Boundary Problems, vol. II, Istituto 
Nazionale di Alta Matematica "Francesco Severi", Roma, 1980. 

2. J. DOUGLAS, JR., B. L. DARLOW, M. F. WHEELER & R. P. KENDALL, "Self-adaptive finite element 
and finite difference methods for one-dimensional, two-phase, immiscible flow," SIAM J. Sci. Statist. 
Comput. (To appear.) 

3. S. N. KRUZKOV, "First order quasilinear equations in several indpendent variables," Math. 
USSR-Sb., v. 10, 1970, pp. 217-243. 

4. P. D. LAX, "Shock waves and entropy," Contributions to Nonlinear Functional Analysis (E. H. 
Zarantonello, ed.), Academic Press, New York, 1971. 

5. A. Y. LE Roux, "A numerical conception of entropy for quasi-linear equations," Math. Comp., v. 31, 
1977, pp. 848-872. 

6. M. F. WHEELER, A Self-Adaptive Finite Difference Procedure for One-Dimensional, Two-Phase, 
Immiscible Flow, Seminar on Numerical Analysis and its Application to Continuum Physics, Coleqao 
Atas, vol. 12, Rio de Janeiro, 1980. 


	Cit r57_c58: 


